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r-MAXIMAL MAJOR SUBSETS 

BY 

M A N U E L  L E R M A N ,  R I C H A R D  A. S H O R E  A N D  R O B E R T  I. SOARE* 

ABSTRACT 

The  question of which r.e. sets A possess major  subsets  B which are also 
r-maximal  in A (A C ,~B )  arose in a t tempts  to extend Lachlan ' s  decision 
procedure for the  V3-theory of ~g*, the lattice of r.e. sets modulo  finite sets, and 
Soare 's  theorem that A and B are automorphic  if their lattice of supersets  
-~*(A)  and &e*(B) are isomorphic finite Boolean algebras. We characterize the  
r.e. sets A with some B C,m A as those with a A3 function that for each recursive 
R~ specifies R, o r / ~  as infinite on ~, and to be preferred in the  construction of 
B. There  are r.e. A and  B with .LP*(A) and ~ * ( B )  isomorphic to the  a tomless  
Boolean algebra such that A has  an rm  subset  and B does not. Thus  (~f* ,A)  
and (~f*, B)  are not even elementari ly equivalent.  In every non-zero r.e. degree 
there are r.e. sets with and without rm  subsets.  However  the class F of degrees 
of simple sets with no rm  subsets  satisfies H1 ___ F C/~z. 

Introduction 

This paper grew out of a meeting of two different lines of investigation into the 

structure of ~f*, the lattice of recursively enumerable sets modulo finite sets. The 

first was an attempt to extend Lachlan's decision procedure for the V3-theory of 

~* [2] by adding on a predicate to distinguish maximal sets. (This should be 

viewed as a first step towards a decision procedure for higher quantifier levels 

since they can be reduced to the V3-1evel by adding on the appropriate 

predicates. This approach is being attempted by Lerman and Soare [8].) 

As in Lachlan's procedure one begins by trying to rule out as many sentences 

as possible by considering certain "canonical" configurations of r.e. sets. It turns 

out that an important new ingredient involves deciding whether or not certain 

simple sets, in particular whether hyperhypersimple (hhs) sets, have major 

subsets which are also r-maximal in them. (Warning: All sets and degrees 

named in this paper will be r.e.) With this convention in mind we define the 

following notions: B is a major subset of A, written B Cm A, iff A - B is infinite 

and 
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~4W)[A U W = * N : : ~  B O W = * N ]  

where A _C*B denotes that A - B  is finite and A = * B  that A _C*B and 

B C* A. We say B is r-maximal in A, written B C,A, iff A - B is infinite and 

r-cohesive i.e. 

C4 recursive R)  [A - B C_* R v A - B C_* R ]. 

Now it is easy to see that some sets A (even hhs sets) have major subsets B .  

which are r-maximal in A (written B C, m A).  Thus for example if A is 

r-maximal (in N) then any B Cm A is also r-maximal in A : For any recursive R 

we have that A _C* R or A C* R by the r-maximality of A. Now B C,,A implies 

that B _C* R or B _C*/~ respectively, so R cannot split A - B. The difficulty 

arises in trying to see if various other simple sets also have rm subsets. Indeed a 

new sentence in this class which must be decided is 

(3A)[A is hhs & A has no maximal superset & ( 3 B ) [ B  CmA]]. 

It turns out that this property depends on the existence of certain A3 functions 

describing some of the behavior of the recursive sets on ~,. Somewhat surpris- 

ingly this leads to the connection with the second line of investigation - -  

automorphisms of ~*. 

Our starting point on this line was Soare's theorem [17] that if M~ and M2 are 

maximal sets they are automorphic, i.e. there is an automorphism r of ~* such 

that r (M~) = M2. One way of viewing this result is as saying that if the lattice of 

supersets of M~ and Mz modulo finite sets are isomorphic to the trivial Boolean 

algebra {0, 1} (,LC*(M~) ~ ~*(M2) ~ 2) then MI and M2 are in fact automorphic. 

Indeed when it is viewed this way Soare also shows in [17] that the result easily 

extends from 2 to any finite Boolean algebra. The natural question at that point 

is whether the result can be extended any further: In particular whether it also 

works for the countable atomless Boolean algebra which is perhaps the simplest 

infinite one. (As ~ * ( A )  being a Boolean algebra is equivalent to A being hhs by 

[1, theorem 3] we call such sets atomless hhs sets.) 

Now all automorphisms of ~* that have so far been explicitly constructed to 

give new elements automorphic to a given set have been given effectively on at 

least a reasonable class of representatives for the r.e. sets. (What is called a 

skeleton in [17].) This turns out to be equivalent to constructing a A3 (on indices) 

automorphism of ~*. Thus a reasonable starting point for trying to extend 

Soare's theorem was whether all atomless hhs sets have A3 isomorphisms 

between their lattices of supersets. We shall note that Lachlan's construction [1, 

theorem 6] of an *~'*(A) isomorphic to a given ~3 Boolean algebra actually 
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produces a A3 map. Thus by constructing arbitrary 3s atomless Boolean algebras 

which are not A3 isomorphic one can produce atomless hhs sets with no A3 

isomorphism between their lattices of supersets. More importantly one can 

control the A3 properties of these Boolean algebras enough to either guarantee 

or rule out the existence of the type of A3 maps associated with rm subsets. As 

the isomorphism to the Le*(A) constructed is A3 the desired properties carry 

over and one constructs atomless hhs sets with and without rm subsets. Of 

course this answers our question on automorphisms negatively since these sets 

cannot be automorphic. 

The organizational plan of this paper is therefore as follows: We study rm 

subsets in w and develop necessary and sufficient conditions for sets to have 

such subsets. In the second section we construct the various 23 Boolean algebras 

needed and analyze Lachlan's construction of the associated hhs sets A, enough 

to show that the desired properties of these algebras are carried over to ~*(A~). 

Next in w we consider the problem of which degrees contain sets with or without 

rm subsets. Here simplicity will play an unusual role: Every simple set A in L2 

(i.e. A " - - r  0")  has an rm subset but there are sets with no rm subset in every 

nonzero degree. We conclude with some remarks and open questions in w Our 

notation is fairly standard and we cite Rogers [12] as a reference for basic facts 

and notation. 

1. r-maximal major subsets 

The question of whether various simple sets have rm subsets arose as we said 

in developing an extension of Lachlan's decision procedure for the V=l-theory of 

~f* in the language of Lachlan [2] plus a predicate M(X) to be interpreted as " X  

is a maximal set". Although as far as this problem is concerned only simple sets 

are relevant the more general question of which sets have rm subsets also arises 

in considering another of Lachlan's results. In response to a question of Rogers, 

Lachlan [1, p. 32] showed that no set A has a major subset B which is also 

maximal (or even hhs) in A. Thus if B CmA, A - B cannot be too thin (i.e 

hh-immune [1, p. 32]). 

The next question along these lines of A - B being " th in"  is whether we can 

have B CmA and simultaneously B r-maximal in A (i.e. B C,mA). If A is 

r-maximal, this is clearly possible. Although there are other examples it is not 

always possible to find B Crr~ A. We characterize exactly when such a B exists in 

terms of a certain A3 condition on A. 

Let us begin by considering the difficulties encountered in trying to construct 
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an rm subset B of a given set A. The construction is to be a movable marker  one 

with the markers resting on the (potential) elements of A - B. To guarantee that 

B C,,A as in [1, theorem 7] one would try to maximize the e-states of the 

markers with respect to the W~, i < e, which so far appear to include ,~ (so that 

W~ U A = N is threatened). (Of course some argument is needed later to show 

that these requirements guarantee that B CmA. However,  this is all that is 

actually done in the construction itself.) Note also that, as we shall see later, a 

reduction argument shows that it suffices to consider only recursive sets in this 

list. On the other hand to make B C,A we must for each recursive set R~ 

guarantee that A - B _C* R, or A - B C* /~ .  The natural attempt here is to try 

to maximize the e-state of the markers with respect to some effective list 

{R~ : i E to} of the recursive sets. Unfortunately these requirements as presented 

conflict rather severely. Thus for example if maximizing the state of the markers 

with respect to Ro has highest priority and Ro C_ A then we will never satisfy the 

majoricity requirement for/~o ( = Wo say). Instead we will have/~o O A = N but 

A - B C_ Ro so that B s Now this does not mean that A has no rm subset 

for we could satisfy the r-cohesiveness requirement just as well by making all the 

markers move to -fro instead of Ro. There would then be no conflict whatsoever 

with the majoricity requirements for Wo. Of course we could have this problem 

with every R~. What we seem to need is a way of deciding which side of the 

r-cohesiveness requirement (R~ or /~,) to prefer when trying to satisfy this 

requirement.  At the very least we must choose a side which intersects ,~ 

infinitely often. Moreover  if we expect to succeed on this side (e.g., 

A - B  C* R~) it must be infinite on A as well. One more moment 's  thought 

shows that this is not sufficient. Our choices must cohere. Thus we cannot prefer 

R0 and a l so /~  if Ro n / ~  n A is finite even though both Ro n A a n d / ~  n ,~ are 

infinite. We are therefore led to the following notion: 

DEFIr~mON 1.1. Let R, = {x I(Vy -< x)[~0, (y) convergent & 9 , ( x ) =  1]}. We 

say that a {0, 1} valued function h is a preference function for A if for every initial 

segment cr of h (or C h) 

(1) Ro n ,~, is infinite and 

(2) R ,  n A is infinite, where R,, = n ,~e ,h , ,R  "~ R~ = R and R ~ = / ~ .  

Note that even for simple sets A these conditions seem stronger than the ones 

we originally thought sufficient [6]. One simplification does however appear if A 

is simple: Condition (2) is automatically satisfied. Thus for simple sets we need 

only verify that a function h satisfies (1). One easy consequence of this is the 

following: 
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1.1(a) If h is a preference function for A and B C A is simple then h is also a 

preference function for B. 

Our next theorem will then imply that if A has an rm subset and B C A is 

simple then B has an rm subset also. For non-simple sets however having an rm 

subset will not be inherited downward. 

Now even a preference function for A will be of no use if it is too complex as 

we must enumerate B effectively. Although we cannot hope for a recursive one 

this much effectiveness is not required. We can get by in the construction with a 

A3 preference function via suitable approximations. Moreover it turns out that 

the existence of a A3 preference function for A is also a necessary condition for 

the existence of an rm subset of A. 

THEOREM 1.2. A has an rm subset iff it has a A3 preference function. 

PROOf. Suppose first that B C,mA. We define the required function by 

h ( i ) =  1 r A - B  _C'R, (r (3x)(Vy > x )  [y E A  -B--->y ER, ] )  and h ( i ) =  

0r A - B C _ * / ~ ,  (r > x )  [ y ~ A - B - - ~ y ~ R , ] ) .  As A - B  is r- 

cohesive exactly one of these ~3 alternatives must occur so that h is well defined 

on N and A3. By definition A - B _C* R~ for every tr C_ h and so R,, 1"3 A is 

certainly infinite. If R~ fq fi, were finite then/~,,  O A =* N. On the other hand 

A - B _C* R~ so t h a t / ~  LIB #* N. This would then contradict the majority of B 

in A. Thus h is the desired A3 preference function for A. 

Next suppose that h is a A3 preference function for A. As h is A3 there is, by 

the well known limit lemma [14, p. 29], a recursive function f(i, n, s) such that, 

for every i, lim,_|174 n , s )=  h(i). We will use this function to approxi- 

mate h in our construction, We will also approximate R I and R~ 

x ~ R~., r (Vy _- x)[q~,.,(y) is convergent] 

& ~,.,(x) = 1 

x E R  ~ ~.s r 0r -<-x)[~,.,(y) is convergent] 

& 0. 

(q~,.,(y) means do s steps in the computation of ~,(y).) Note that while 
R 0 0 U , < , R ~ ,  R~ in every case, I,.,I,<,~ ~.,= R,  only if R, is infinite. This will not 

bother us in the construction since if R~ is finite the cohesiveness requirement for 

it is automatically satisfied. 

Our construction of B is by the standard movable marker type of argument. 

We enumerate A in stages via a 1-1 recursive function a(s)  and put A, = 
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{a( i ) l i  < s}. We have markers  A. resting on various elements in A but not yet 

in B, say A~, at stage s. They are moved to maximize their n-states with respect 

to our  approximation to the sequence {R h0)}. To be precise we define the n-s tate  

of x at stage s to be the map o-(n, x)  from n + 1 into {0, 1} given by 

x)(i) = 

otherwise. 

The n-states are ordered lexicographically and in moving the markers  A. to 

e lements  in higher n-states priority is given to lower numbers.  At  the conclusion 

of each stage elements  in A, without a marker  are enumera ted  in B. Finally at 

the end of the construction we argue that the markers  come to rest so that A - B 

is infinite and that the maximization of n-states does guarantee that B C,m A. 

CONSTRUCnON. Stage s: Put the least marker  Ak not on any number  on a(s) 
so M, = a(s). Let (n, m ) be the (lexicographically) least pair such that n < m and 

_ A~ - M f o r i < n , A .  =A~, tr C h (If none exists go on to stage s + 1.) Now set s + l  _ _  * + 1  , 

and remove  the A, for i > n. All numbers  that have been enumera ted  in A but 

are not equal to some M +' are now enumera ted  in B. 

LEMMA 1.3. Lim,~= A; = A~' exists [or every n. 

PROOF. By induction assume that A~= A7 for every i < n. Let  so be large 

enough so that 0r <= n)Ols > so) ([(i, n, s) = f(i, n, so)). Thus at every stage 

s > So A, is trying to move to a number  of max imum n-state  with respect to the 
S O I(i, n, So)" t same fixed sequence of sets t--~ 1i-~.. Once this sequence is fixed the n-s tate  

at stage s of any number  is as usual a non-decreasing function of s. As there are 

only a finite number  of n-states  A. can move to an e lement  in a higher n-state  

only finitely often after stage so. Moreover ,  by the induction assumption, A'~ can 

never  be changed for the sake of increasing t h e / - s t a t e  of any M i < n. Thus A'. 

changes only finitely often after stage So and so is eventually constant. []  

L E M M A  1.4. O/i)(A - B  _C*R~(')). 

PROOF. Say io is the least counterexample.  Let fro be h restricted to io and tr~ 

be h restricted to io+ 1. Choose no large enough so that 

(Vi <= io)(Vn >= no)(! im [(i,n,s)= h(i))  . 

By assumption we may choose hi>no so that AT,~_R~o t'~ but A~,ERo~. 
Moreover  we may assume that A~, > max{x I x E R, & i < i0 & R, is finite}. We 

now choose so large enough so that A~',=A;~ and Oli <= io)Ols >-_- so) 
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if(i, nl, s ) =  h(i)). We also assume that if s > so then a ( s ) > m a x { x l x  E R, & 

i < i0 and R, finite}. For  our contradiction we now consider the possibility of an 

s > So such that ~ i  =< io) (R, infinite---> a(s) E R (,t~"l's)). If there is such an s then, 

at stage s, A~,1 would be changed to a (s) since it would be in a higher hi-state 

contradicting our choice of So. If there is no such s we claim that R,,, n .A is 

recursive: To see if x > A~I is in Ro~ n fi, ask first if x E R,,,. If not of course the 

answer is no. If x E R~ wait until x E R ~)  for each i ~ i0 for which Rj is infinite. 

If x ~ As then x ~ A by assumption. So if no such s exists R~I n A = R~ 1 for 

some it > i0. But then each possible value for h (il) contradicts one of the clauses 

of the definition of a preference function for A. []  

It is immediate from this lemma that B C,A. To see that B CmA suppose 

W, U A  =*N.  We reduce We and A to get a recursive Rk with Rk C* We and 

/~kC*A,  so that A C_*Rk. Thus h ( k ) = l  and again by Lemma 1.4 

A - B _C* Rk C W~ so We U B = * N as required. [] 

As a simple application of this theorem (which will also be needed in w we 

show that the property of having an rm subset is well defined on the equivalence 

classes determined by the relation "major  in". We say that A =~,B if 

A A B  cmA UB.  

PgoPosmoN 1.5. If  B cmA then A has an rm subset iff B does. 

PaooF. Suppose h is a A3 preference function for A. We claim it is also one 

for B : 

(1) 0/~r C_ h) (Ro n fi~ is infinite) so B C_ A simplies that (V~r C_C_ h)  (R,, n / ~  

is infinite). 

(2) Consider any o, C_ h such that R,, O A is infinite. If R~ n B were finite 

then R ,  n A C* A - B and so there would be an infinite recursive subset of 

A - B .  Its complement contradicts the definition of B C~ A. 

On the other  hand if h is a ~3 preference function for B it is also one for A : 

(1) For any o" C h R,, n / ~  is infinite. If R~, O .,~ were finite then/~,,  violates 

the definition of B C,,A. 

(2) Immediate as B C A. []  

To conclude this section we want to consider the connection between rm 

subsets and another type of major  subset (small major  subset) which was 

introduced by Lachlan [2, theorem 3] as a key element in his decision procedure 

for the V3-theory of ~*.  These sets were named by M. Stob who discovered [19] 

several of their properties as we note below. Small sets also play an important 

role in the study of d-simple sets [7]. (Along the way we prove some facts about 

rm subsets that are needed in [8] for the extended decision procedure.) 
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DEFINITION 1.6. B is small in A (BC, A)  if (VU, V)(VD_ U A ( A - B )  
--*(U - A )  O V is r.e.). Of course B ~ .  A or B ~,m A mean that B is small in A 

as well as B CmA and B C, mA. 

Now the notions of sm subsets and rm subset are quite different. In some 

rough sense B C,r,A means that B is close to A or rather that A - B is thin. 

Thus for example C,m is not transitive. On the other hand, B C_,m A implies that 

in some ways B is far away from A. Thus for example Stob notes that if 

C C B q A  then C q A  and similarly if C q B C A  then C q A .  Indeed no 

reasonable notion of a major  subset B being close to A can force B q A  by 

another  result of Stob: (VB CmA) (::IC) (BC,,CCmA & C~_sA & B~sC).  

These remarks  easily combine to show that there are often rm subsets which are 

not small and sm ones which are not r-maximal.  The interesting question is thus 

when, if ever, can these notions coincide. We have a neat answer only when A is 

simple. 

PROPOSITION 1.7. IrA is simple then A has an s rm subset iff A is r-maximal. 

PROOF. Lachlan shows [2, theorem 3] that every set has an sm subset. 

However ,  as we have noted, if A is r-maximal  every major  subset is automati-  

cally rm. Thus every sm subset of A is srm. On the other  hand, suppose 

B CsrmA but R splits ,4. As B C,A we can assume that A - B _C* R. (Otherwise 

use/~.)  Putting U = / ~  and V = O in the definition of B ~ A we see tha t /~  - A 

is r.e. As it is also infinite by our choice of R it violates the simplicity of A for 

our contradiction. []  

Unfortunately this approach cannot be used to completely characterize those 

sets with s rm subsets. Although the same proof  shows that if A is simple in any 

W (i.e. (VV) ( W A  V infinite---~ V A A  infinite)) and B ~ , m A  then W - A  is 

r-cohesive, there are nowhere simple sets (i.e., not simple in any W) with s rm 

subsets. To see this we first prove a fact also needed for the decision procedure.  

LEMMA 1.8. I fBC,mA ( B ~ m A ) , A o U A ~ = A ,  A o O A I = O a n d A , - B i s  
infinite (as it must be for i = 0  or I) then B NA,  C,,,A~ (B A A ,  ~ r ,A , ) .  

PROOF. (1) B n A t  CmA~: If WUA~ = * N  then W UA = * N  so that W U  

B = * N. So ,4, _C* W and/~ _C* W i.e.,/~ U/~, _C* W. Thus W U (B n A, ) -- * N. 

(2) B n At c,  Ai: At - (B O At) c_ A - B which is already r-cohesive. 

(3) B A A , ~ A , :  say V D _ U N ( A , - ( B O A , ) ) .  Let V'= V O  
( U O ( A - A ~ ) ) .  Since A0 and A1 split A V'  is r.e. and moreover  V'_D 

U O (A - B).  As B C A ,  (U  - A )  U V'  is r.e. Rewriting this we have ( U  - A )  U 
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V U ( U A ( A  - A , ) ) = ( U - A ) U ( U A ( A  - A,)) U V = ( U - A , ) U  V is r.e. as 

required. Thus B n A~ c~ A~. [] 

COROLLARY 1.9. There is a nowhere simple set whith an s rm subset. 

PROOF. Choose any B q ,mA.  By [16, theorem 2] we can split A into 

two nowhere simple sets A0 and A~. By the lemma then B N A~ q , ~ A ,  for 

i = 0 o r  1. []  

As our last remark relative to the general decision procedure problem we note 

that rm subsets are the only way to get d.r.e, sets (i.e., of the form A - B)  which 

are r-cohesive but not co-r.e. 

PROPOSmON 1.I0. If A - B  is r-cohesive but not co-r.e., then B C, mA. 

PROOF. Suppose W shows that B s  As A - B is not co-r.e. W must split 

A - B. (Otherwise W U B =* A - B.) We reduce W and A to get a recursive 

set R C W with/~ C A but then R also splits A - B for our contradiction. [] 

2. Automorphisms and orbits of atomless hhs sets 

Our goal in this section is to construct an atomless hhs set with an rm subset 

and one without one. This, of course, implies that they are not automorphic.  We 

will also see that the atomless hhs sets fall into infinitely many orbits with respect 

to the class of A3 automorphisms.  Our  starting point is the construction of 

various representations ~ i  = {b~}~<,o of the atomless Boolean algebra which are 

not A3 automorphic of which only some have A3 preference functions h, i.e. 

(VcrC_h)(br (Recall that as in Definition 1.1 we have defined b, ,= 

n~=~,h~r b T{').) We then show that these propert ies are preserved by Lachlan's 

embedding of ~ onto ~ * ( A  i) for various hhs A (  

As a preliminary step we consider the Boolean algebra ~ *  = {p~},<, of sets 

with primitive recursive characteristic functions p, modulo finite sets. (As the 

notation suggests we identify sets and their characteristic functions p,.) ~ *  is 

obviously atomless. We will also need a couple of other facts about it. 

PROPOSITION 2.1. There is no {0, 1} valued A2 function h such that for every i, 

h ( i )=  l ~ p , ~ * O ,  and 

h(i )  = 0 ::>/~, ~*  O. 

PROOF. Consider any {0, 1} valued A2 function h. We can write out the 

definition of h as h(i )  = 1 4:~ Vx 3y  T~(i, x, y)  and h(i)  = 0 r Vx 3y  To(i, x, y) 
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where To and T~ are primitive recursive relations. Next note that there is a 

primitive recursive function f such that 

p,(.)(s) = f 
0 if (gx =<s)[(Vy <<-s)~ To(e,x,y)] 

= (/.~x =< s) [0iy <= s) ~ T~(e, x, y )] 

1 otherwise. 

As g(e, s )=  Pf(e)(s) is also primitive recursive the recursion theorem for primi- 

tive functions gives us an i such that p, = Pr(,r. We claim that h fails to have the 

required property at i: 

If h (i) = 1 then there is an Xo such that (Vy)--- To(i, Xo, y). On the other  hand 

(Vx -< x0)(3y)  T~(i, x, y). Let So be a hound on these witnesses y for x -< x0. For 

s >-_ So we have that 

(/.tx = s ) [0 ty  <= So)----, To(i, x, y)] ~ Xo <= (txx <- s0)[(Vy <= s ) ~  Tl(i, x, y)]. 

Thus plo)(s) = 0 = p,(s)  for s = So so p~ = * Q  for a contradiction. The argument 

for h (i) = 0 is essentially the same. I-7' 

PROPOSmON 2.2. <--~., i.e., C_* on ~ *  = {p~}, is a complete E2 predicate. 

PROOF. First note that p C * p , C ~ ( B x ) ( V y > x )  [ p , ( y ) = l ~ p j ( y ) = l ]  so 

that _--<~. is E2. (It is for this reason that we followed a suggestion of C. G. 

Jockusch and used ~ *  instead of the recursive sets ~ because Ca. is not E2 

although it is of course A3.) 

On the other  hand we show that the complete E2 set Fin = {e J W, =* 0} is 

m-reducible to the relation _-<~., namely W e = * O  if[ (3x)(V(yo, y , ) > x )  
T(e, y0, y0, where T is the usual primitive recursive Kieene T-predicate. 

There is then a recursive f such that 

p~(~)((yo, y~)) = 1 r T(e, yo, y,) and 

PI(,)((Yo, Y~)) = 0 r ~ T(e, y0, yl). 

Thus W. = ' O  r pr(,)=*f~ r p~(,)C*O. [7' 

We can now describe the various representations of the atomless Boolean 

algebra that we need via relativizations of ~* .  Let ~B.  = {p~ be the sets with 

characteristic functions p~ primitive recursive in B modulo finite sets. 

' C. G. Jockusch has pointed out that 2. t and 2.2 can also be derived from a proof that {i J p~ =* 0} 
and {i I P~ =* 0} are recursively inseparable relative to 0 ' .  



Vol. 31, 1978 MAJOR SUBSETS 11 

COROLLARY 2.3. There is no {0, 1} valued A3 ]:unction h such that [or every i 

h ( i ) = 1 implies p ~r ~ * ~ and h ( i ) = 0 implies p ,X ~ * f~ where K is the complete r.e. 

set. 

PROOF. Relativize Proposition 2.1 to K and note that A3 = A~. [] 

COROLLARY 2.4. I f  C E ~3 and 0"  <=TC then there is a presentation of the 

atomless Boolean algebra with its inclusion relation of the same degree as C. 

PROOF. By Sacks' jump theorem [12, ch. 13, XXV] there is an r.e. B such 

that B"=-TC. The relativization of Proposition 2.2 then says that _<~,B* is 

complete E2 in B and so of the same degree as C. [] 

We will now sketch enough of Lachlan's construction [1, theorem 6] of an hhs 

A with ~ * ( A )  a perscribed E~ Boolean algebra ~ to see that there is in fact a A3 

isomorphism between the given presentation of ~ and the standard one of 

~ * ( A )  as {W~ t_lA},<~. On this basis we can go from the algebras presented 

above to hhs sets whose lattices of supersets have the desired A3 properties. 

Lachlan begins with a list {b~}~<~ of generators for the given Boolean algebra 

and an associate of ~ which is a map F~ : 2 <~ --~ {0, 1} such that F~ (tr) = 0 iff 

b~ =0 .  The picture here is of a binary tree with the branching at level i 

representing intersection with b~ and /~ respectively. Thus F~ tells us which 

Boolean combinations of generators are 0 and so nicely codes the algebra ~ .  

Thus for example F is E3, i.e., F~ (tr) = 0 is a ~3 predicate, iff _---~ is ~3. Indeed it 

is easy to see that F~ and _-<~ are of the same Turing degree. 

The next step is to build the desired hhs set A. Lachlan's construction may be 

pictured as beginning with a binary tree. Steps in the construction consist of 

putting numbers (eventually all of them) on nodes of the tree and moving them 

from one node to another or off the tree entirely which corresponds to putting 

them into A. Numbers are moved subject to various geometric constraints as to 

the type of motion allowed so as to maximize the e-states of occupants of nodes 

of level e. The motion is also of course guided by an approximation to the E3 

associate F so as to guarantee the ~ * ( A )  is in fact isomorphic to ~ .  

If we let C~ be the elements that from some stage of the construction onward 

rest on some node r _D 0", then we can state the main achievements of the 

constraints on, and requirements of, the construction as follows: 

(1) 0/(r)[A tO C~ is r.e.]. 

(2) (V(r)[C,, = ' O  r162 F( t r )=01.  

(3) 0/i)(Vtr),,~=,+t[C~ C_* W, v C~ O W, = ' O ] .  

It is clear from these properties that if we let {a, = A tO to {c,.a I l thtr = i}},<,~ be 
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a set of generators for a Boolean algebra of sets ~ then F~ = F~ so that , d m  

via the map sending a, to b,. Now it is also easy to see that not only is 

~dmo~*(A) but in fact there is a A3 isomorphism between the standard 

presentation of L?*(A) and ~ given by ~(W~ U A ) =  W{a~, I lthtr = i + 1 & 

C~ C* W~}. That ~(W~ U A)  =* W~ U A is immediate from (3). To see that ~ is 

A3 it suffices to show that C,, _C* W~ is As. First 

c~ ___* w, r (3x)(Vy > x)[y E c~ ~ y E w,] 

r (3x)(Vy > x)[(3~ _~ o-)(3s)(Vt > s) 

[y is on node ~" at stage t of the construction] ~ y E W~]. 

Thus C~ _C* IV, is E3. On the other hand by (3) C~, _C* W~ iff W~ t7 C,, is infinite iff 

(Vx)(::ly > x)[y E Wj & y E C,~] which by the definition of C~ is II3. Thus q is 

in fact A3. Composing maps we now have a A3 isomorphism @ between the 

standard presentation of L?*(A) and the given one of ~ .  This enables us to show 

that ~ * ( A )  inherits the desired properties from the Boolean algebras discussed 

at the beginning of this section. 

THEOREM 2.5. For every C E Y,3 with O" <=TC there is an atomless hhs A with 

(--.LC*(A) =--T C. 

PROOF. Choose B as in Corollary 2.4 with B"=-rC and let ~ = ~ a -  so that 

_-<~---rC. By the above discussion we have a As, and so recursive in 0",  

isomorphism @ :~*(A)---~ ~3. As ~"--_<TC it suffices for this theorem to show 

that O"_-<r_-z.(A) as well: Let f be a recursive function such that Wr(,)= 

{x 1(3y > x ) [ y  E We]}. Then We is finiteiff Wr(p)UA C_*A. [] 

COROLLARY 2.6. There are infinitely many atomless hhs sets A, such that for 

any i J  j .~*(A,) is not As isomorphic to .~*(A~). 

PROOF. As O"--<r~*(Ai) for every i any As isomorphism would preserve the 

Turing degree of --<se.(a). It therefore suffices to choose the A~ given by the 

theorem for C's of different degree. [] 

Note that these methods cannot be applied to non-hhs sets since if A is not 

hhs then --<~e.(A) is E3 complete: Let W1(x ) be a weak array showing that A is not 

hhs. To see that {e I W, is cofinite}, a E3 complete set, is m-reducible to -<~e.(A) 

just note that We is cofinite r Wx<~ wt(x) u A C* Wx~we Wrtx) u A.  

THEOREM 2.7. There is an atomless hhs set A with no As preference function 

and hence no rm subset. 
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PROOF. Let A be the set constructed as above beginning with the Boolean 

algebra ~ "  and tO be the associated A3 isomorphism. As tO-1 is also A3 we can 

clearly find a A3 function g such that tO(Wst, ) U A ) = p~. As ~ * ( A  ) is a Boolean 

algebra we know that for every W~ there is a Wj such that W~ U Wj U A = N and 

W~ O Wj C_ A. As both of these conditions are recursive in O" (the first is I-I2, the 

second l-I1) we can get a recursive in ~i" and so A3 function f such that f ( i )  is the 

desired Wi. We can then reduce W~ U A and Wt~, ~ to get a recursive set 

R _C W~ U A with/~ C_ Wit~ ). As an r.e. index for R can be found effectively from 

i and f ( i )  we have a A3 function d such that Rdtl)C_ W~ U A and Rat~)C_ Wtt~). It is 

now easy to see that if h were a A3 preference function for A then the A3 

function hdg would violate Corollary 2.3. Thus for example hdg(i)= 1 

Rdgt~)nA isinfinite ::), Wst,)AA isinfinite ~ W~t,)UA ~ * A  ~ p ~ * f ~ .  [] 

THEOREM 2.8. There is an atomless hhs set A with a A3 preference function 

and so an rm subset. 

PROOF. Let ~ = {b,},<~ be a recursive presentation of the atomless Boolean 

algebra and A the hhs set constructed from it as above. Again to : ~*(A)---~ ~ is 

a A3 isomorphism. Now W, A A is infinite iff to(W~ U A ) ~  0. As this last 

relation is recursive {iIW~ n ,4 is infinite} is A3 and so recursive in 0 "  as is 

{i I Ri n .ft. is infinite}. We now define our preference function h recursively in 

~"  by induction, h (0) = 1 iff Ro n fi, is infinite. Let tr be h restricted to i. Now 

h(i) = 1 iff R~. O Ri O .4 is infinite. We can find an index for R ,  recursively in ~"  

so h is recursive in 0" .  As R,~ O ,A is infinite by induction if R,  n R~ n ,Z, is not 

then R ~.h~) n ,ft, = R~ n / ~  N A is infinite as required. [] 

Our main result is an immediate consequence of these last two theorems. 

THEOREM 2.9. There are two atomless hhs sets which are not automorphic. [] 

3. Degree classes 

In this section we will consider the question of which degrees contain sets with 

or without rm subsets. (Recall that we consider only r.e. degrees.) As the 

property of having an rm subset is inherited downward on simple sets it is easy to 

see that such sets exist in every non-recursive degree. On the other hand we will 

diagonalize over A3 functions to produce in each non-recursive degree a set with 

no rm subset. Here however non-simplicity plays a necessary role as every 

simple set A with degA ~ L2 (i.e. A"=--TO") has an rm subset. As far as the 

degree question for simple sets with no rm subsets is concerned we can only 

show that a familiar situation obtains. The class of degrees is trapped between/~2 
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and H2 (the r.e. degrees with jump 0"). We first examine the simple sets with rm 

subsets. 

THEOREM 3.1. Every simple set has simple subsets of each non-recursive 
degree. Thus in every non-recursive degree there are simple sets with rm subsets. 

PaOOF. Let M be any simple set. By Robinson [11, theorem 2] we can choose 

a B E a with an enumeration function b such that the associated computation 

function fails to dominate some recursive f. We can then easily choose an 

enumeration m of M so that the associated computation function does dominate 

f. If we then let A be the set of elements of M permitted by B, {m (s ) l (3 t  > s) 

(b(t)<= re(s))}, A is our required set. As usual A =<TB while the choice of 

enumerations guarantees that M - A is infinite and so B ~ r A .  If We is infinite, 

We N M is infinite. So if We n A were finite we could enumerate  an infinite list 

of elements in M - A  and so compute B effectively. Thus A is simple. As 

having a A3 preference function is inherited downward on simple sets (1.1a) if we 

choose M to have an rm subset A will also have one. []  

Now we turn to non-simple sets without rm subsets. 

THEOREM 3.2. Every a > 0 contains a set A with no rm subset. 

PROOF. We will build A while diagonalizing over all A3 preference functions 

to guarantee that A has none and so no rm subset. Let B E a. Our positive 

requirements will try to code B into A in a nice way. To spread them out and 

minimize interference with the negative requirements we first choose a recursive 

sequence {Qi} of recursive sets such that Vo- (Q~ is infinite) and U i< ,  Q, = N. 

We then choose a strong array of disjoint finite sets {Ce}e,, with Ue<,Ce  = N 

such that (Vtr),h~<~ [C, n Q,,~ 0 ] .  Our positive requirements are then given by 

Pe : If e E B put one element of Ce into A. 

It is clear that if the P, all succeed and that they are the only causes of elements 

entering A then B - r A .  (First e ~ B iff C, n A ~ 0 .  Next to see whether x E A 

find an e such that x ~ C,. If e E B wait until Pe succeeds and see if x is put into 

A. If e ~ B ,  x~_A.) 
The negative requirements are designed to guarantee that there is no h3 

preference function for A. We will list all possible {0, 1} valued h3 functions by 

listing all pairs (S~, T,) of E3 predicates. The intention is that for each such 

function h there is an i such that ~ (x )  = 1 r S~(x) and ~ (x )  = 0 r T~(x). For 

the diagonalization we choose a recursive function f such that O~ = Rw). Our 

requirement for each i is then 
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Ni: If (S,, Ti) define a A3 function h as above then Q~e~'))OA = ,,r~,~~ a - ,  ,..~ is 

recursive. 

Now if h is defined by (S,, T,) and Ni succeeds then h cannot be a preference 

hero) n fi, = Rk for some k >- f(i) by assumption. Any value function for A :Rrt  o , ,  

for h (k) will thus contradict the definition of a preference function as Rk O A = 

O and ~ n , ~  = 0 .  Thus if all the N~ succeed A will have no rm at,,, . f ( i )  

subset. 

To  approximate the ~3 predicates S~ and T~ in the construction [12, p. 326] we 

give simultaneously r.e. sequences of r.e. sets $7 and T7 so that 

S, (.f(i)) r (3n) [S ; '  is infinite] and 

T~ (g(i)) r162 ( 3 n ) [ T 7  is infinite]. 

In the construction we proceed on the assumption that the value of the 

associated function is that associated with the list which first has an infinite set on 

it. (Of course if (S~, T~} correctly defines some h then only one list has an infinite 

set anyway.) In this way we will guess which of Q, O A, Q, O A we wish to make 

recursive by keeping elements out of A. The ordering of priorities for fixed i is 

ST< T7 iff n =< m. To be precise we describe the actual construction. 

CONSTRUCTION. Stage s: Say e = b(s) where b enumerates B. Define a o" of 

length e by t r ( i ) =  0 iff 

(l~n)(3x)[x ~ Ce N Q, and x _-< max(ST.,)] 

<-_ (l~n)(3x)[x E (7, O (~, and x _<- max(T~.,)]. 

(Otherwise a t ( i )=  1.) We now put an element of C, O Q~ into A. 

The positive requirements are obviously satisfied. To establish the theorem we 

need only show that if (S~,T~} defines a A3 function h then Q~Ct~ is 

recursive. Fix i and suppose that h (f(i)) = 1 (the proof is similar if h (i) = 0). Let 

n be the least n such that $7 is infinite. (Of course for no m is T? infinite by 

assumption.) Let m = m a x ( U ~ ,  T~). To see if an x > m + max{y 1(3e)[y  E C, 

& (::lz < m ) [ ( z  ~ (~,]]} which is in Q~ is also in fi~ find an s such that 

max S" > x. We claim that if x ~ A, then x ~ A. Suppose x ~ C, and e = b(t) ,  

t _-> s. (Otherwise x has no chance of being put into A - A,.) Thus x E C, O Q~ 

and x _-< max $7., but no element of C, is less than m so there is no element of 

C, n 0 ,  less than max T~., for j _-< n. Thus at stage t tr(i) = 0 and we put an 

element of (~, into A. Of course x never again has a chance to be put into A. [] 

Note that the negative requirements to make a set nowhere simple as in [16] 
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can easily be combined with this construction just by making the Ce larger (e.g. 

I Q,, O C , I >  e) to produce a nowhere simple set with no rm subset. Combining 

this with Corollary 1.9 we see that at the opposite end of the scale from hhs sets 

one gets nowhere simple sets with and without rm subsets. 

Our final results will deal with the class of degrees F = {a I there is a simple 

A E a with no rm subset}. We will show that /3,2 ~ F ~ Hz. 

THEOREM 3.3. I f  A is simple and A E L2 then A has an rm subset. 

PROOF. As A EL2, i.e., A " = - r O "  it is immediate that { e I W ,  n fi~ 

infinite} --<r 0".  As we have already seen in the proof of Theorem 2.8 this suffices 

to construct a A3 preference function for A. [] 

THEOREM 3.4. I f  b ~ HI there is a simple set B E b with no rm subset. 

PRoof. Let A be the hhs set with no rm subset constructed in Theorem 2.7. 

By Lerman [5] we may take B CmA of degree b. By Proposition 1.5 B has no rm 

subset. Moreover B is simple: If W is infinite but W O B = 0 ,  then as A is 

simple O #* W n A c A - B. There is then an infinite recursive R _C W n A c_ 

A - B and/~ violates the majority of B in A. [] 

4. Final remarks and open questions 

In Section 2 we refuted the conjecture that ~ * ( A ) ~ * ( B )  implies A 

automorphic to B for all hhs sets A, B. Is this true for any hhs set A beside those 

where ~ * ( A )  is a finite Boolean algebra as proved in [17, corollary 2.6]? Are 

there any other classes of r.e. sets besides hhs sets where the conjecture holds? 

The Post program [10] of classifying r.e. sets A in terms of the lattice of 

supersets ~ * ( A )  is seen to be increasingly inadequate for determining the 

atutomorphism type of A. Rather one must examine relations between an r.e. 

set A and its complement. For example, if A is simple then having a A3 

preference function is a property solely of fi, and yet determines whether A can 

possess certain kinds of subsets. Other examples of properties relating A to fi, 

are the d-simple sets [7], the extension theorem for generating automorphisms 

[17, theorem 2.2], and the small major subsets [2, theorem 3] of the Lachlan 

decision procedure. There are undoubtedly many more of these properties and 

they will play a crucial role in the final classification of automorphism types of 

r.e. sets and in the decision procedure for its elementary theory. 

In Corollary 2.6 we produce atomless hhs sets {A,},<~ such that for iF./,  

~*(A~) is not m 3 isomorphic to ~*(Aj) ,  and hence A~ is not automorphic to A~ 
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by the known automorphism methods [17] and [18] which always generate A3 

automorphisms. As a final attempt to generalize the maximal set automorphism 

result [17] to hhs sets, suppose that .~*(A) and Le*(B) are isomorphic by a A3 

isomorphism. Is A necessarily automorphic to B?  Which classes of r.e. sets 

besides maximal sets and infinite, coinfinite recursive sets constitute orbits (i.e., 

any two members are automorphic)? 

Finally, one of the most interesting questions on r.e. sets and their degrees is 

the classification of degrees of classes of r.e. sets which are invariant under 

automorphisms. Martin [9] showed that H1 = {d : d contains a maximal set}, and 

Lachlan [3, theorem 4] and Shoenfield [15] showed that L2 = {d : d contains an 

atomless coinfinite r.e. set}. Lerman and Soare showed [7] that not every 

invariant class C of r.e. degrees is of the form H,  or/7,n since D, the degrees 

containing d-simple sets, satisfy H1 _C D and D splits L,. In Section 3 we showed 

that H~ _C F C_/72. What is the exact classification of F ?  Which of the other high 

and low classes Hn and L~ of r.e. degrees are invariant? Recall that 

H.  = {d : d r.e. and d ~n) = 0c~+'}, and 

L~ = {d : d r.e. and s t") = 0t")}. 

What is the classification of the coinfinite r.e. sets having no r-maximal superset? 

Which other simple sets having no rmm subset exist besides the few atomless hhs 

sets in Section 2 and their major subsets.'? There is a direct construction of a 

simple set with no A3 preference function (and hence no rmm subset) obtained 

by diagonalizing over all possible A~ functions. Variations of this construction 

may lead to an exact classification of F. 
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